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bodies at large Reynolds number 
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SUMMARY 
This note advocates amodel of the steady flow about a bluff body 

at large Reynolds number which is different from the classical 
free-streamline model of Helmholtz and Kirchhoff. I t  is suggested 
that, although the free-streamline model may be a proper solution 
of the Navier-Stokes equation with p = 0, it is unlikely to be the 
limit, as p -+ 0, of the solution describing the steady flow due to 
the presence of a bluff body in an otherwise uniform stream. The 
limit solution proposed here is one which gives a closed wake. 

A closed wake contains a standing eddy, or eddies, whose 
general features can be inferred from the results of an earlier 
investigation of steady flow in a closed region at large Reynolds 
number. In  all cases, the drag (coefficient) on the body tends 
to zero as the Reynolds number tends to infinity. The procedure 
for finding the details of the closed wake behind two-dimensional 
and axisymmetrical bodies is described, although no particular 
case has yet been worked out. 

1. INTRODUCTION 
The determination of the steady flow about a bluff body placed in a 

uniform stream of incompressible viscous fluid at large Reynolds number 
(where the word ' steady ' in this context implies that somehow turbulence 
has been suppressed) is an old problem, for which no completely satisfactory 
solution is available. Enough is known of solutions of the Navier-Stokes 
equation for us to anticipate that at large Reynolds number viscous forces 
will be small (when made non-dimensional in the usual way) everywhere 
except in the neighbourhood of a number of singular surfaces of the fluid. 
Away from these singular surfaces, or shear layers, the flow is essentially 
inviscid, and various analytical and numerical techniques are applicable ; 
near the singular surfaces the flow has a boundary layer character, and again 
there are many relevant aids to analysis. However, these principles and 
techniques are of no avail unless the properties of the singular surfaces (viz. 
their position, and the velocity increments across them) in the fluid are 
known, and this is the principal stumbling-block of the problem. 

In  the case of fluid streaming steadily past a body of such streamline 
form that no separation of the boundary layer on the body surface occurs, 
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the properties of the singular surfaces are evident enough, and a complete 
self-consistent description of the flow can be given. The  body surface is 
one singular surface, and another is the surface formed from all the stream- 
lines that extend downstream from the trailing edge in the corresponding 
irrotational flow. I n  the limit of infinite Reynolds number, the velocity of 
the fluid is everywhere the same as it would be for an inviscid fluid, except 
at the body surface and on the wake surface, and the difference between the 
solution for p -+ 0 and that for p = 0 (where p is the viscosity of the fluid) is 
here trivial. 

In  the case of bluff bodies immersed in a uniform stream, and in a number 
of other kinds of flow in which boundary-layer separation occurs, the 
properties of the singular surfaces are far from being evident intuitively, and 
cannot be calculated directly even for the simplest body shapes. Nor does 
experiment provide much guidance, since the steady flow in the wake of a 
bluff body is unstable, and becomes turbulent, at a Reynolds number which 
is not large enough to reveal clearly the character of the asymptotic steady 
flow. It is necessary, therefore, to make some guess about the properties 
of the singular surfaces before the character of the flow at large Reynolds 
number can be determined. T h e  problem has no direct physical impor- 
tance, of course, in view of the ever-present instability, but it has some 
mathematical interest for those concerned with properties of solutions of 
the Navier-Stokes equation. Moreover, it may well be that a knowledge 
of the steady flow in the limit of infinite Reynolds number would allow the 
determination, by some kind of asymptotic expansion, of the flow at the 
upper end of the range of Reynolds numbers at  which the flow is stable, 
more readily than by an expansion valid in the neighbourhood of zero 
Reynolds number. 

The  model of the flow that is commonly used is the free-streamline 
model, based on Helmholtz’s (1868) concept of vortex sheets, and worked 
out fully for the case of a (two-dimensional) plate set broadside-on to the 
stream by Kirchhoff (1869) and later by Rayleigh (1876). It is unlikely 
that these authors were concerned to find the complete form of the limit 
flow, and their aim may have been simply to use the observable phenomenon 
of vortex sheets shed from a body in order to provide a more realistic 
representation of the velocity distribution near the plate than can be obtained 
from a wholly irrotational flow. However, be that as it may, the free- 
streamline model of the limit flow is the only one available at the present 
time and is commonly regarded as a correct representation of the flow that 
would occur at large Reynolds number in the absence of turbulence. It 
is in this capacity alone that it is here being criticized and replaced by 
another model. 

2. THE HELMHOLTZ-KIRCHHOFF FREE-STREAMLINE MODEL 

The  free-streamline model is undoubtedly right in its division of flow in 
the limit of infinite Reynolds number into regions of inviscid motion 
separated by singular surfaces across which the velocity and its derivatives 
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may be discontinuous. In  this respect we can improve on Helmholtz’s and 
Kirchhoff’s notions only by recognizing that vortex sheets need not always 
be uniform. Apart from this feature of vortex sheets, or detached boundary 
layers, which nowadays we should take for granted, the essence of the free- 
streamline model of flow past a bluff body is that it supposes the velocity of the 
fluid to be zero everywhere inside what may be called a wake bubble, the 
boundary of the wake bubble being a singular surface, Two other pieces 
of information must be supplied before the model determines the flow field 
completely; one is the location of the curve (which reduces to two 
points in cases of two-dimensional flow) of intersection of the body surface 
and the surface of the wake bubble, and the other is the (uniform) pressure 
in the wake bubble. It is not clear whether these two pieces of information 
are independent or not. So far as can be judged from work on two- 
dimensional flows, choice of the wake pressure seems to determine the 
position of intersection of the body surface and the wake bubble and vice 
versa; for instance, Southwell & Vaisey (1946) were able to find a definite 
shape of the wake bubble behind a circular cylinder, by a numerical solution 
of the equation for inviscid flow, for each of a number of different assumed 
wake pressures and with no assumption about where the free-streamlines 
met the surface of the body. 

Kirchhoff found that for the two-dimensional flat plate that, when the 
wake pressure is equal to that far upstream, p ,  say, and the free-streamlines 
spring from the edges of the plate, the wake bubble is open, with a width 
which increases as x1i2 at a large distance x from the body. Levi-Civita- 
see Birkhoff (1950)-found this same asymptotic parabolic form of the 
wake bubble for a family of two-dimensional bodies with the wake pressure 
taken as p,. It  appears that, for some choices of the pressure in the wake, 
the bubble is closed at the downstream end. Closed wake bubbles, which 
are necessarily characterized by a cusp at the downstream end in order to 
allow the velocity just outside the bubble boundary to be uniform, have 
been obtained for a circular cylinder (Southwell & Vaisey 1946) and for a 
truncated aerofoil (Lighthill 1949) by choosing wake pressures larger thanp,. 

The present objection to the free-streamline model of steady flows in the 
limit of infinite Reynolds number takes one of two different forms according 
to whether the wake bubble is open or closed. If it is open, the objection 
is to precisely that property of the model-that is to say, the model appears 
(to this writer) as wrong in conception. If it is closed, the objection is that 
viscous stresses at the boundary of the bubble would build up an appre- 
ciable circulation in the wake bubble and that the model is not self- 
consistent. 

The objection in the latter form rests on the results of a recent investi- 
gation (Batchelor 1956) into the properties of steady flow in a closed region 
at large Reynolds number R. I t  was argued there that viscous stresses 
acting in the shear layer at the boundary of the closed region have a small 
but persistent effect on the flow in the closed region, and that, provided the 
flow is truly steady, however large the Reynolds number may be (i.e. 
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provided the limit operations t + 00, R --f 00, t being the time measured 
from an instant at which arbitrary initial conditions are prescribed, are 
carried out in that order), the flow in the closed region has a unique form. 
The form of the vorticity distribution could be determined explicitly in the 
cases of closed flows that are two-dimensional or axially symmetrical, 
although a multiplicative constant remained to be determined in each case 
from the condition of matching of the ‘inviscid’ flow in the core of the 
cavity with the viscous flow in the neighbourhood of the boundary. In 
one typical, but mathematically very simple case, this multiplicative 
constant was calculated, and it was established that, as expected, the general 
level of the velocity in the closed region was of the same order of magnitude 
as that of the velocity of the surrounding boundary. The implication of 
this work for truly steady flow past a bluff body at very large Reynolds 
number is that, if the wake bubble is closed, it will contain a standing eddy, 
or eddies, in which the velocity distribution has a unique and (in sufficiently 
simple cases) calculable form, and in which the velocity is of the same order 
of magnitude as (although no doubt smaller than, by a factor of, say, two or 
three) that outside the wake. This motion in the wake bubble will have an 
appreciable effect on the shape of the boundary of the wake bubble, and the 
notion of an equi-pressure boundary to a closed wake is not self-consisrent, 
except perhaps as a rough approximation in suitable cases. The properties 
of a closed wake, with allowance for the internal circulation, are considered 
in the next section, this being just the model that is advocated here. 

We turn now to a consideration of the other of the two alternatives, that 
is, the free-streamline model with a wake bubble which is not closed at the 
downstream end. The objections to this picture of the flow about a bluff 
body in the limit of infinite Reynolds number spring mainly from one’s 
distaste for such a drastic interference with conditions at infinity far down- 
stream. I cannot see any reason why a free-streamline flow pattern with 
an open wake should not be a valid solution of the Navier-Stokes equation 
in the limit of infinite Reynolds number (unlike a free-streamline flow with 
a closed wake, which is not self-consistent), but I think there is room for 
doubt about whether it is the solution that corresponds to the boundary 
conditions appropriate to a bluff body placed in an otherwise uniform stream. 

One’s suspicions about this are aroused by the sudden changes that 
appear to be necessary in the general character of the flow when the Reynolds 
number is changed continuously. At sufficiently small Reynolds numbers, 
the streamlines in contact with the two sides of a two-dimensional body 
certainly meet again further downstream, enclosing a finite region of fluid 
behind the body (see, for example, the calculations and observations of the 
flow past a circular cylinder, at Reynolds numbers between 20 and 30, 
described in Goldstein 1938, $20). How then could the region bounded 
by the two branches of the surface streamline change from being closed to 
being open, as the Reynolds number increases? It is not sufficient to 
suppose that the point of closure moves further downstream, and ultimately 
to infinity, as the Reynolds number increases (nor is there definite evidence 
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from calculations that this does happen, once the Reynolds number is above 
some small value, such as about 30 for a circular cylinder), because a closed 
wake bubble, however long, would develop an appreciable internal motion 
by viscous action and the bubble boundary would inevitably take up the 
one possible shape-which (so it is argued in the next section) is such that 
the length of the wake bubble is finite when the Reynolds number is infinite. 

The  boundary conditions that must be specified in order to make a 
solution of the Navier-Stokes equation unique are not known with certainty, 
so that it is not possible to give a precise statement of the mathematical 
problem under discussion. There is a fair presumption, however, that we 
are looking for the limit, as R + 03, of that steady solution of the Navier- 
Stokes equation for which the velocity of the fluid is zero at the surface of 
the given body and is uniform everywhere at infinity. It seems to be true 
of all the existing numerical solutions of the Navier-Stokes equation at 
finite Reynolds number that this set of boundary conditions is necessary 
and sufficient for uniqueness. If this presumption is correct, the free- 
streamline model with an open wake bubble gives an unwanted limit 
solution, in view of its property of non-uniformity of the velocity at infinity. 

Pursuing another line of thought, when the Reynolds number is very 
large, but not infinite, the singular surface at the boundary of the open wake 
bubble is converted into a shear layer of small but finite thickness. The  
thickness of the shear layer will ultimately increase as x1i2 (in a case of two- 
dimensional flow) by viscous entrainment, like any boundary layer with 
uniform external conditions, and the fluid in the wake bubble must supply 
part of the inflow to the shear layer. A small back-flow (from the region far 
downstream, and towards the body) in the wake bubble is thus necessary, 
and, since the width of the open wake bubble also varies as &I2 (in at least 
some cases), this backflow can be thought of as a uniform flow inside the wake 
bubble. The  interference with the flow conditions at infinity that is 
implied in the free-streamline model now appears as even more drastic when 
the Reynolds number is not infinite, since the presence of the body must be 
supposed to be responsible for the generation of a small back-flow origi- 
nating far downstream. Is it not likely that the solution represented by 
the free-streamline model with an open wake bubble is that which is 
obtained on(p by the imposition of suitable boundary conditions at infinity, 
i.e. by the external imposition of a small uniform backward velocity (which 
is of order R-l12 and hence becomes zero in the limit of infinite Reynolds 
number) over a region y 2  < const, x x at x + co ? 

3. THE PROPOSED LIMIT FLOW WITH A CLOSED WAKE 

T h e  discussion of the Helmholtz-Kirchhoff free-streamline model 
given in the preceding section has already indicated the general features of 
the preferred alternative model of limit flow past a bluff body. T h e  point 
of view taken here is that an open wake bubble is inadmissible for the 
problem at hand, although it may be a feature of the limit solution for 
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some different set of boundary conditions at infinity. We should there- 
fore seek a limit solution for which the wake bubble is closed, this being the 
essence of the present proposal. Opinions may vary about the admissi- 
bility of an open wake bubble, but I think there would be general agreement 
that, if a solution describing steady flow about a bluff body in the limit of 
infinite Reynolds number and exhibiting a closed wake bubble could be 
found, that solution would be regarded as the desired solution in preference 
to  the free-streamline solution. I have not been able to  find such a solution 
mathematically, but I believe that its existence is suggested by a number of 
arguments. 

For the moment, let us  accept the suggestion that the desired limit flow 
past a bluff body possesses a closed wake bubble and explore its implications. 
There is an immediate implication that the drag coefficient for the body is 
zero (in the limit, R -+ a), since the flow everywhere outside the combined 
body and wake bubble is inviscid and irrotational. This is in contrast with 
the free-streamline model, which leads to a finite drag coefficient (the work 
done by the body appearing as an addition to the infinite amount of kinetic 
energy-using now axes fixed in the fluid at infinity upstream-possessed 
by the fluid). The  prediction of finite drag coefficient by the free-stream- 
line model has been greeted as a strong argument in its favour, since it avoids 
the conflict with experience usually described as the d’alembert paradox*. 
My own view is that steady laminar flow in the limit of infinite Reynolds 
number is so far outside the range of ‘ experience ’ that the prediction of a 
finite value of the drag coefficient under these conditions is not more wel- 
come physically than the prediction of a zero value. Indeed, in view of the 
indisputable result that the drag coefficient for a body of streamline form, 
for which the development of the laminar boundary layer over the entire 
boundary is calculable, is of order R-1/2 when R is large, there is a slight 
advantage in the prediction of zero drag coefficient for a bluff body in the 
limit R --f 00, since it reduces the distinction between bodies of different 
shape. 

As mentioned already, an investigation of the character of steady flow in 
a closed region at large Reynolds number has been described in a previous 
paper (Batchelor 1956), and the results of this investigation can now be used 
in a description of the flow in the closed wake bubble for certain kinds of 
bluff body. It was found there that, given that the flow is truly steady 
however large the Reynolds number may be, the vorticity distribution in a 
closed region could be worked out in cases of ( a )  two-dimensional flow, 
(6)  axisymmetric flow without azimuthal swirl, and (c )  axisymmetric flow 
with swirl, subject to some restrictions. It is not necessary to describe all 

*Inasmuch as in real flow past a bluff body the drag coefficient is finite-due, in 
all probability, to the existence of turbulence in the wake-the free-streamline model 
doubtless provides a closer representation of the general form of the pressure distri- 
bution on the body in the real flow than does the classical solution which assumes 
wholly irrotational motion. However, the representation of certain aspects of the 
real turbulent flow is an ad hoc objective, different from that pursued here. 
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the results here; suffice it to say that in case (a)  the vorticity is uniform 
(w = wo, say), and in case ( 6 )  the azimuthal component of vorticity (which 
is the only non-zero component) is equal to ur, where r denotes distance 
from the axis of symmetry and u is a constant. These vorticity distributions 
are valid throughout a closed region, except in the neighbourhood of the 
surrounding singular surface where viscous forces are not small. The 
constants coo and a, which measure the strength of the inviscid ' standing 
eddy' in each case, are determined mathematically by the condition that 
steady motion should be possible in the surrounding viscous boundary layers. 

As an example of the application of these results to the proposed limit 
flow with a closed wake bubble, consider the case of a two-dimensional flat 
plate set broadside-on to the stream. The surface of the plate is one of the 
singular curves, in the neighbourhood of which viscous forces are appre- 
ciable however large the Reynolds number may be, and there will be other 
such singular curves in the fluid coincident with the streamlines passing 
downstream from the edges of the plate. These streamlines mark the 
boundary of the wake bubble, which we are supposing to be closed at the 
downstream end, and their shape is shown schematically in figure 1. The 

IRROTATIONAL FLOW 
u o  - 

WITH UNIFORM - VORTlClTY - W, 
- 
- 

/ C  

Figure 1. Flow past a two-dimensional flat plate in the limit of 
infinite Reynolds number, as proposed herein. 

motion inside the wake bubble is driven by the action of viscous stresses at 
the curve AC,  so that the streamlines just outside A C  have greater total head 
than those just inside AC. In the limit R - t  co, the streamline A C  will 
thus be a vortex sheet, whose strength will vary along its length according 
to the requirements of continuity of pressure across AC, viz. 

( U/ Uo)z - (V/  Uo)z = constant, h say, 
where U and V are the velocities just outside and inside the vortex sheet 
respectively and Uo is the speed of the uniform stream. At the closure 
point C, V is necessarily zero, and this relation shows that U is then finite 
at C. 

The property of symmetry about the line bisecting the plate shows that 
the wake bubble must be divided into two halves, the vorticity taking oppo- 
site signs in the two halves. This suggests that the line of symmetry DC is 
a singular curve, as can also be seen to be the case from a consideration of 

This requires the wake bubble to have a cusp at C. 
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the viscous shear layer in the neighbourhood of the curve AC. The stream- 
line that intersects the plate boundary at A divides the unclosed streamlines 
outside the wake bubble from the closed streamlines inside the bubble, and, 
since viscous forces are significant in a thin layer extending on both sides of 
the curve AC, it follows that at C part of the boundary layer about AC 
passes downstream and part returns to the plate along the line of symmetry 
CD. Thus the wake slit extending downstream from C is a singular curve, 
so too is the portion of the line of symmetry CD, and finally so too is the 
portion D A  of the boundary in view of the need to satisfy the no-slip condition 
there. We are led to a simple picture of the wake bubble as a pear-shaped 
domain in which viscous forces are negligible everywhere except near the 
boundary and the line of symmetry, the inviscid flow not near these curves 
being characterized by uniform vorticity, of strength - wo in the upper half 
of the bubble and + wo in the lower*. ( A  propos of the point made earlier, 
about the possible value of a knowledge of the limit flow as a means to the 
calculation of the flow at finite Reynolds numbers, it will be noticed that the 
general form of the flow past a circular cylinder at Reynolds numbers 
between 20 and 30 (see Goldstein 1938, $20)) and that at Reynolds 
number 40 (as found numerically by Kawaguti 1953), both resemble that 
of the corresponding limit flow proposed here.) 

The closed line ACDA is a streamline lying within a continuous boundary 
layer surrounding one half of the wake bubble. Over the part AC of this 
closed curve the viscous stress exerted by the external flow tends to produce 
a clockwise rotation of the upper standing eddy, on the part DA the stress 
opposes circulation in any direction, and on the part CD the stress is zero 
owing to the symmetry. The standing eddy takes up an equilibrium rate 
of rotation, measured by the vorticity -wo,  in response to these driving 
forces ; the larger is the ratio of the length of boundary over which the eddy 
is driven to that over which there is retardation, the larger will be wo, and 
the smaller will be h. An equivalent statement is that wo takes such a value 
that the relative momentum of the boundary layer about ACDA is augmented 
over part of its path and depleted over other parts, the net effect being to 
allow the boundary layer to return to its starting point without change. 

It is not difficult to see how this picture of the flow should be changed to 
suit bodies of different shape. If a two-dimensional plate is not broadside-on 
to the stream, the flow has the same general features as for the broadside-on 
position, except for the symmetry; in particular, the dividing free 
viscous layer CD is no longer straight, and the vorticities of opposite sign in 

*Actually, this picture may be a little too simple since it is possible that the 
fluid at the centre of the boundary layer on CD is brought to rest, before reaching D, 
by the adverse pressure gradient near the stagnation point at D, and that the free 
boundary layer cuts across the corner at D. In this event, another singular surface 
would exist to divide the main body of fluid in the wake bubble from a secondary 
standing eddy in the corner at D, and indeed there may even be a whole sequence of 
such singular surfaces and standing eddies of diminishing size as D is approached. 
These are refinements to the picture and I propose to ignore them in order not to 
obscure the main argument. 
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the two sections of the wake bubble are no longer of equal magnitude (but 
note that the loss of head across the bubble boundary, represented by h, 
must be the same for the two sections of the bubble in view of the need for 
continuity of the pressure across the dividing free layer CD at position C 
where the velocity is zero on both sides). I n  the case of two-dimensional 
bodies without sharp edges, there is the additional complication that the 
two positions of separation of the boundary layer on the forward portion of 
the body are no longer determined by the geometry alone, but in other 
respects the picture is unchanged. In  the case of bluff axisymmetric bodies 
placed symmetrically in the stream, the singular surface in the interior of 
the wake bubble degenerates to a line, and the free viscous layer returning 
from the closure point along the axis of symmetry in the form of a thin 
cylinder no longer separates two regions of inviscid motion. The  distri- 
bution of vorticity within the wake bubble is now given by w = MY, and 
the bubble boundary has the same general form (schematically) as that in 
figure 1. Again the constant M is determined by the condition that the 
motion in the viscous layer bounding the wake bubble should be steady. 
For a three-dimensional body without axial symmetry, the same general 
principles apply, but the form of the distribution of vorticity within the 
wake bubble is not known. 

T h e  proposed model of steady flow at very large Reynolds number has 
now been described, and there remains the question, does such a flow 
satisfy the Navier-Stokes equation ? There are two parts to this question, 
one concerning the flow of the thin layers where viscous forces are signi- 
ficant, and one concerning the regions in which the flow is essentially inviscid. 
Consider first the viscous layers. One viscous layer forms on the forward 
portion of the body, separates from it and passes downstream in contact 
with the wake bubble, leaves the wake bubble at the closure point, and 
passes to  infinity downstream as a wake. T h e  development of this viscous 
layer is not subject to any restrictions, and will proceed according to what- 
ever inviscid velocity distribution exists just outside the layer. Another 
viscous layer has a closed path, which includes the back of the body and the 
inner side of the boundary of the wake bubble (being in contact with the 
other viscous layer over this part of its path). This viscous layer is subject 
to  the restriction imposed by the need to  return back on itself after one 
circuit of its path, and steady viscous flow will be possible only if the inviscid 
velocity distribution just outside the layer has a suitable form. I think it is 
reasonably certain that this restriction can be satisfied by an appropriate 
choice of the intensity of the inviscid motion within the wake bubble, the 
latter being measured by the constants wo and M in the simple cases described 
above. If the boundary of the wake bubble did not change its shape with 
change of w,, or tc, this proposition would be beyond question, and it seems 
likely to remain valid-although no longer readily provable-when the 
changes of shape in the bubble are admitted. 

T h e  flow in the regions of inviscid flow must now be shown to be self- 
consistent, bearing in mind that, for a givenshape of the bubble boundary, the 
inviscid flow inside the wake bubble is already prescribed-as to distribution, 
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by the requirements of steady flow in a closed region, as worked out in 
detail for certain simple cases in the earlier paper, and as to intensity, by 
the need for steadiness in the surrounding viscous layer. Moreover, the 
flow outside the combined body and wake bubble is prescribed by the 
irrotationality, as soon as the shape of the bubble boundary is given. Thus 
the crux of the inquiry lies in the possibility of finding a bubble shape, for 
each of a number of arbitrarily chosen values of wo or u (speaking of simple 
symmetrical bodies for the sake of definiteness), and for a given position of 
intersection of the bubble boundary with the body surface, such that the 
inviscid motions in the two sides of the bubble boundary satisfy the condition 

where h is an unprescribed constant (which may vary with wo or K). If 
such a family of bubble shapes for different values of wo or cc within some 
continuous range can be found, then presumably for one of them the con- 
dition for steadiness of the closed viscous layer will be satisfied and the 
Navier-Stokes equation will be satisfied everywhere. 

So far as the regions of inviscid flow are concerned, the proposed model 
of the limit flow can be regarded as differing from the free-streamline 
model by its allowance for motion inside the wake bubble (as well as by its 
rejection of open bubbles). As stated in 5 2, it is generally believed that the 
free-streamline model for a given body is determinate when either the 
position of intersection of the free-streamlines with the body surface or the 
wake pressure is given, the required condition coming presumably from a 
consideration of the boundary layer on the forward portion of the body 
surface. The model proposed here replaces the wake pressure parameter 
by the parameter h (the two being uniquely related when there is no motion 
in the wake bubble), and introduces an additional parameter wo or u, charac- 
terizing the motion inside the wake bubble, which must be determined from 
a consideration of the closed boundary layer surrounding the wake bubble. 
It seems a reasonable inference from experience with the free-streamline 
model that, for a given body shape and position of intersection of the bubble 
boundary with the body surface, the value of h is determined by the choice 
of wo or  a ,  A ‘ relaxation ’ solution of the inviscid equations for the two- 
dimensional flow down a finite step in an otherwise plane boundary, the 
region in the lee of the step being occupied by a standing eddy with uniform 
vorticity wo, has been obtained by Miss Ann Hawk at Cambridge for one 
arbitrarily chosen value of wo, and the value of h was here found to emerge 
as one of the *results of the calculation. 

Problems of inviscid flow with finite vorticity and boundaries of un- 
known shape are very difficult to handle, and I have not been able to show 
in general that it is in fact possible to find a bubble shape for a given body 
shape and position of the intersection of the wake bubble with the body 
surface, and an arbitrary value of wo or cc. A little support for the belief that 
an appropriate bubble shape exists for each value of wo or u (within a certain 
range) can be found in the fact that a Hill’s spherical vortex (see Lamb 1932, 
ch. 7) has a vorticity distribution of the required form, viz. w = ur, and 

( u/ UOlZ - (V/ UOl2 = h, 
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satisfies the above boundary condition with h = 0 when a = 15U0/4a2 
(a  being the radius of the sphere containing the vorticity). A Hill’s spherical 
vortex may be regarded as a possible wake bubble for a body in the form of 
a sector of a spherical shell subtending an angle Oo, say, at the centre of the 
sphere, so far as conditions outside the viscous layers are concerned, u 
having the maximum possible value and h being zero. At the other extreme 
there is the free-streamline solution for the same spherical cap (the details 
of which are not known mathematically, although such a flow has been 
observed about a cavitating sphere in water), corresponding to u = 0 and to 
whatever is the value of h that corresponds to the intersection of the free- 
streamlines and the body being at the edge of the spherical cap. For all 
intermediate values of a, and consequently of h, there should exist an in- 
viscid wake bubble for the same spherical cap, the bubble boundary having a 
finite length (at any rate, for tc # 0) and a cusp at the rearmost point. The 
value of a for which the viscous layer bounding the wake bubble is in steady 
motion seems likely to be one corresponding to a bubble whose length is 
not many times larger than the linear dimensions of the spherical cap-for 
if it were much larger, the area of bubble boundary over which the irro- 
tational stream accelerates the standing eddy would be much larger than 
the area over which the cap retards it, and the vorticity in the standing eddy 
would take up a value close to its maximum, and this in turn corresponds 
to a short bubble. 
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